

Intake and digestibility of beef cattle fed corn silage or total mixed ration

O.G. Pereira¹, V.S. Santos¹, A.J.S. Macêdo¹, K.G. Ribeiro¹, S.C. Valadares Filho¹
*Department of Animal Science, Federal University of Viçosa

Introduction

- ✓ Optimizing livestock production systems has been a central focus of recent research;
- ✓ Adapting diets to meet specific nutritional requirements of animals has been effective in reducing waste, labor, and costs;
- ✓ In this context, total mixed ration (TMR) silages have emerged as a promising strategy in ruminant production due to their operational and nutritional advantages;
- ✓TMR silage also demonstrate greater aerobic stability, maintaining feed quality over time;
- ✓ The use of microbial inoculants, such as *Lentilactobacillus buchneri*, improves silage quality by reducing dry matter losses, minimizing ethanol production;
- ✓ It was hypothesized that TMR silages influence intake and digestibility in beef cattle.

 (Nair et al. 2020)

Objectives

 \checkmark Our objective of this study was to evaluate the effects of TMR corn silages, with or without *L. buchneri* inoculation, on the intake and digestibility of nutrients in beef cattle.

Materials and Methods

- ✓ The experiment was conducted in the Federal University of Viçosa, Viçosa, Minas Gerais, Brazil;
- ✓ A 4 × 4 Latin square design was used, with four animals, four diets, and four experimental periods;

 Type of silage:

Corn crops

Inoculant: CTRL and LB

Beef cattle: Intake and Digestibility

- ✓ The treatments followed a 2 × 2 factorial arrangement, including two silage types [corn silage (CS) and total mixed ration silage (TMR)] with or without (CTRL or LB) microbial inoculant;
- ✓ The inoculant used was a commercial product containing *Lentilactobacillus buchneri* (LB) (LalSil AS, CNCM I-4323, Lallemand Animal Nutrition®, Brazil);
- ✓ The TMR formulation included ground corn, soybean meal, urea, mineral premix, sodium bicarbonate, and magnesium oxide, with a roughage-to concentrate ratio of 40:60, formulated for finishing beef cattle;
- ✓ CS and TMR were ensiled in concrete silo tubes and stored for 90 days;
- ✓ The experimental period lasted 80 days, divided into four 20-day periods, with 14 days for diet adaptation and six days for sample collection;
- ✓ Feed intake and digestibility were determined by the difference between feed offered and refusals, complemented by fecal sampling;
- ✓ The statistical significance used was declared at $P \le 0.05$.

Results

- ✓ No significant effects ($P \ge 0.05$) of silage type (S), inoculant (I), or their interaction (S × I) were observed on the intake of dry matter, organic matter, or starch;
- ✓ However, an effect of silage type (P = 0.0338) was observed on neutral detergent fiber intake;
- ✓ An interaction effect (S × I) was detected (P = 0.0464) for organic matter digestibility;
- ✓ Animals fed TMR silage exhibited higher digestibility of dry matter (P = 0.0011), crude protein (P = 0.0130), and starch (P = 0.0028) compared to those fed CS;
- ✓ Neutral detergent fiber digestibility was not influenced ($P \ge 0.05$) by any of the factors studied;

Table 1. Nutrient digestibility of diets fed to finishing beef cattle based on whole-plant corn silage (CS) or total mixed ration silage (TMR), with (*L. buchneri*; LB) or without (CTRL) microbial inoculant.

Inoculant	Sila	age				<i>P</i> -value		
	SM	TMR	Average	SEM	S	I	$S \times I$	
Dry matter (%)								
CTRL	71.06	77.03	74.04	1.689	0.1538	0.0011	0.0545	
LB	64.08	78.34	71.21		0.1338			
Average	67.57	77.68						
Organic matter (%)								
CTRL	72.60Ba	78.33Ab	75.46	1.634	0.1239	0.0010	0.0464	
LB	65.48Bb	79.51Aa	72.49		0.1239	0.0010	0.0404	
Average	69.04	78.92						
Crude protein (%)								
CTRL	63.01	68.70	65.85	2.448	0 1077	0.0130	0 1156	
LB	51.54	69.91	60.72		0.1877	0.0130 0.1130	0.1156	
Average	57.27	69.30						
Starch (%)								
CTRL	84.81	90.93	87.87	1.005	0.7992	0.0028	0.8780	
LB	84.25	90.79	87.52		0.1992	0.0028 0.8780	0.0/00	
Average	84.53	90.84						

SEM: Standard error of the mean; P-value: Probability of effects for inoculant (I), silage type (S), and their interaction (I × S); Means followed by different uppercase letters in rows and lowercase letters in columns differ significantly according to Fisher's F-test ($P \le 0.05$).

Conclusions

✓ Corn silage, fed alone or as part of a total mixed ration, does not significantly affect the nutrient intake of beef cattle. However, its inclusion as a component of TMR silage increases the digestibility of dry matter and starch, providing a practical advantage in the daily feeding of animals using ensiled TMR.

Acknowledgements

✓ The authors thank the CNPq, Capes, Fapemig, Funarbe and the INCT-Ciência Animal for financial support.

References

✓ Nair, J., Huaxin, N., Andrada, E., Yang, H. E., Chevaux, E., Drouin, P., & Wang, Y. (2020). Effects of inoculation of corn silage with *Lactobacillus hilgardii* and *Lactobacillus buchneri* on silage quality, aerobic stability, nutrient digestibility, and growth performance of growing beef cattle. *Journal of Animal Science*, 98(10), skaa267.